Publications and PresentationsPeer Reviewed Publications:51. P. W. C. Northrop, B. Suthar, V. Ramadesigan, S. Santhanagopalan, R. D. Braatz and Venkat R. Subramanian, "Efficient Simulation and Reformulation of Lithium-Ion Battery Models for enabling Electric Transportation", J. Electrochem. Soc., 161(8), E3149-E3157 (2014).[pdf] 50. M. Lawder, B. Suthar, P.W.C. Northrop, S. De, M. Hoff, O. Leitermann, M. L. Crow, S. Santhanagopalan and Venkat R. Subramanian, "Battery Energy Storage System (BESS) and Battery Management System (BMS) for Grid-scale applications", Proceedings of IEEE, in press (2014).[pdf] 49. B. Suthar and V. R. Subramanian, "Lithium Intercalation in Core-Shell Materials–Theoretical Analysis," J. Electrochem. Soc., 161(5), A682-A692 (2014).[pdf] 48. B. Suthar, V. Ramadesigan, S. De, R. D. Braatz and V. R. Subramanian, "Optimal Charging Profiles for Mechanically Constrained Lithium-ion Batteries," Phy.Chem.Chem. Phy., 16(1), 277-287 (2014).[pdf] 47. S. De, B. Suthar, D. Rife, G. Sikha and V. R. Subramanian, "Efficient Reformulation of Solid Phase Diffusion in Electrochemical-Mechanical Coupled Models for Lithium-Ion Batteries: Effect of Intercalation Induced Stresses," J. Electrochem. Soc., 160(10), A1675-A1683 (2013).[pdf] 46. S. De, P.W.C. Northrop, V. Ramadesigan and V. R. Subramanian, "Model-Based Simultaneous Optimization of Multiple Design Parameters for Lithium-ion Batteries for Maximization of Energy Density," J. Power Sources, 221, 161-170 (2013).[pdf] 45. P. W. C. Northrop, P. A. Ramachandran, W. E. Schiesser, and V. R. Subramanian, “A Robust False Transient Method of Lines for Elliptic Partial Differential Equations,” Chem. Eng. Sci., 90; 32–39 (2013).[pdf]
44. N. A. Choudhury, P. W. C. Northrop, A. C. Crothers, S. Jain, and V. R. Subramanian, "Chitosan hydrogel-based electrode binder and electrolyte membrane for EDLCs: experimental studies and model validation," J. Appl. Electrochem., 42 (11), 935-943 (2012).[pdf] 43. L. He, V. R. Subramanian, and Y. J. Tang, “Experimental analysis and model-based optimization of microalgae growth in photobioreactors using flue gas,” Biomass Bioenerg., 41, 131-138, (2012).[pdf] 42. A. Guduru, P. W. C. Northrop, S. Jain, A. Crothers, T. R. Marchant, and V. R. Subramanian, “Analytical solution for electrolyte concentration distribution in lithium-ion batteries,” J. Appl. Electrochem., 42, 189-199 (2012).[pdf] 41. V. Ramadesigan, P. W. C. Northrop, S. De, S. Santhanagopalan, R. D. Braatz, and V. R. Subramanian, “Modeling and Simulation of Lithium-Ion Batteries from a Systems Engineering Perspective,” J. Electrochem. Soc., 159(3), R31-R45 (2012). [pdf][Critical Review] 40. P. W. C. Northrop, V. Ramadesigan, S. De, and V. R. Subramanian, “Coordinate Transformation, Orthogonal Collocation and Model Reformulation for Simulating Electrochemical-Thermal Behavior of Lithium-ion Battery Stacks,” J. Electrochem. Soc., 158(12), A1461-A1477 (2011). [pdf] 39. R. N. Methekar, V. Ramadesigan, J. Carl Pirkle Jr., and V. R. Subramanian, “A perturbation approach for consistent initialization of index-1 explicit Differential-Algebraic Equations arising from battery model simulations,” Comput. Chem. Eng., 35(11), 2227-2234 (2011). [pdf] 38. V. Ramadesigan, K. Chen, N.A. Burns, V. Boovaragavan, R. D. Braatz, and V. R. Subramanian, “Parameter Estimation and Capacity Fade Analysis of Lithium-Ion Batteries Using Reformulated Models,” J. Electrochem. Soc., 158(9), A1048-A1054 (2011). [pdf] 37. A. Elkamel, F. H. Bellamine, and V. R. Subramanian, “Computer Facilitated Generalized Coordinate Transformations of Partial Differential Equations with Engineering Applications,” Comput. Appl. Eng. Educ., 19, 365-376 (2011). [pdf] 36. R. N. Methekar, P. W. C. Northrop, K. Chen, R. D. Braatz, and V. R. Subramanian, “Kinetic Monte Carlo Simulation of Surface Heterogeneity in Graphite Anodes for Lithium-ion Batteries: Passive Layer Formation,” J. Electrochem. Soc., 158(4), A363-A370 (2011). [pdf] 35. V. Ramadesigan, R. N. Methekar, F. Latinwo, R. D. Braatz, and V. R. Subramanian, “Optimal Porosity Distribution for Minimized Ohmic Drop across a Porous Electrode,” J. Electrochem. Soc., 157(12), A1328-A1334 (2010). [pdf] 34. B. Prabhala, M. Panchagnula, V. R. Subramanian, and S. Vedantam, “Perturbation Solution of the Shape of a Nonaxisymmetric Sessile Drop,” Langmuir, 26(13), 10717–10724, (2010).[pdf] 33. V. Ramadesigan, V. Boovaragavan, J. Carl Pirkle Jr., and V. R. Subramanian, “Efficient Reformulation of Solid-Phase Diffusion in Physics-Based Lithium-ion Battery Models,” J. Electrochem. Soc., 157(7), A854-A860, (2010).[pdf] 32. V. Boovaragavan, V. Ramadesigan, M. V. Panchagnula, and V. R. Subramanian, “A continuum representation for simulating discrete events for battery operations,” J. Electrochem. Soc., 157 (1), A98-A104, (2010). [pdf] 31. V. Boovaragavan, R. Methekar, V. Ramadesigan, and V. R. Subramanian, “A Mathematical model of the lead-acid battery to address the effect of corrosion,” J. Electrochem. Soc., 156 (11), A854-A862, (2009). [pdf] 30. V. R. Subramanian, V. Boovaragavan, V. Ramadesigan, and M. Arabandi, “Mathematical Model Reformulation for Lithium-ion Battery Simulation: Galvanostatic Boundary Conditions,” J. Electrochem. Soc., 156 (4), A260-A271 (2009). [pdf] 29. S. Harinipriya, V. D. Diwakar, and V. R. Subramanian, “Performance Characteristics of Cathode Materials for Lithium-Ion Batteries: A Monte Carlo Strategy," J. Electrochem. Soc., 155 (12), A875-A878 (2008). [pdf] 28. V. Boovaragavan, S. Harinipriya, and V. R. Subramanian, “Towards accurate real-time (milliseconds) parameter estimation of Lithium-ion batteries using reformulated physics based models," J. Power Sources, 183(1), 361-365 (2008). [pdf] 27. S. Harinipriya, and V. R. Subramanian, “Monte Carlo Simulation of Electrodeposition of Copper: A Multistep Free Energy Calculation,”J. Phys. Chem. B, 1112, 4036-4047 (2008). [pdf] 26. V. Boovaragavan, and V. R. Subramanian, “Evaluation of optimal discharge current profile for planar electrodes to maximize the utilization,” J. Power Sources 173(2), 1006-1011, (2007). [pdf] 25. V. R. Subramanian, V. Boovaragavan, and V. D. Diwakar, “Towards real-time (milliseconds) simulation of physics based lithium-ion battery models,” Electrochem. Solid St., 10(11) A255-A260 (2007). [pdf] 24. V. Boovaragavan, and V. R. Subramanian, “A quick and efficient method for consistent initialization of battery models,” Electrochem. Commun., 9(7), 1772-1777 (2007). [pdf] 23. V. R. Subramanian, V. Boovaragavan, K. Potukuchi, V. D. Diwakar, and A. Guduru, “A Novel Numerical Symbolic Solution for AC Impedance Response of Electrochemical Devices,” Electrochem. Solid St., 10(2), A25-A28 (2007). [pdf] 22. V. R. Subramanian, “Computer Facilitated Mathematical Methods in Chemical Engineering - Similarity Solution,” Chem. Eng. Educ., 40(4), 307-312 (2006). [URL] 21. V. R. Subramanian, V. D. Diwakar, D. Tapriyal, “Efficient Macro-Micro Scale Coupled Modeling of Batteries,” J. Electrochem. Soc., 152(10), A2002-A2008 (2005). [pdf] 20. V. K. Maddirala, and V. R. Subramanian, “An Approximate closed form Solution for Pressure and Velocity Distribution in the Cathode Chamber of a PEM Fuel Cell,” J. Power Sources, 143(1-2), 173-178 (2005). [pdf] 19. V. D. Diwakar, and V. R. Subramanian, “Effect of Varying Electrolyte Conductivity on the Electrochemical Behavior of Porous Electrodes,” J. Electrochem. Soc., 152(5), A984-A988 (2005). [pdf] 18. S. Devan, V. R. Subramanian and R. E. White, “Transient Analysis of Porous Electrodes,” J. Electrochem. Soc., 152(5), A947-A955 (2005). [pdf] 17. V. R. Subramanian, S. Devan, and R. E. White, “An Approximate Solution for a Pseudo Capacitor,” J. Power Sources, 135(1-2), 361-367 (2004). [pdf] 16. V. R. Subramanian and D. Tapriyal, “A Boundary Condition for Porous Electrodes,” Electrochem. Solid St., 7(9), A259-A263 (2004). [pdf] 15. S. Devan, V. R. Subramanian, and R. E. White, “Analytical Solution for the Impedance of a Porous Electrode,” J. Electrochem. Soc., 151(6), A905-A913 (2004). [pdf] 14. V. R. Subramanian, and R. E. White, “Semianalytical Method of Lines for Solving Elliptic Partial Differential Equations,” Chem. Eng. Sci., 59(4), 781 (2004). [pdf] 13. V. R. Subramanian, and R. E. White, “Simulating Shape Changes during Electrodeposition - Primary and Secondary Current Distribution,” J. Electrochem. Soc., 149(10), C498 (2002). [pdf] 12. Q. Guo, V. R. Subramanian, J. W. Weidner, and R. E. White, “Estimation of Diffusion Coefficient of Lithium in Carbon Using AC Impedance Technique,” J. Electrochem. Soc., 149(3), A307-A318 (2002). [pdf] 11. V. R. Subramanian, J. A. Ritter, and R. E. White, “Approximate Solutions for Galvanostatic Discharge of Spherical Particles -1. Constant Diffusion Coefficient,” J. Electrochem. Soc., 148(11), E444-E449 (2001). [pdf] 10. V. R. Subramanian, P. Yu, B. N. Popov, and R. E. White, “Modeling Lithium Diffusion in Nickel Composite Graphite,” J. Power Sources, 96(2), 396-405 (2001). [pdf] 9. V. R. Subramanian, and R. E. White, “A new separation of variables method for composite electrodes under galvanostatic boundary conditions,” J. Power Sources, 96(2), 385-395 (2001). [pdf] 8. V. R. Subramanian, and R. E. White, “Symbolic solutions for boundary value problems using Maple,” Comp. Chem. Eng., 24(11), 2405-2416 (2000). [pdf] 7. R. E. White, and V. R. Subramanian, “Mathematical Modeling of Electrodeposition,” Plating & Surface Finishing, 41st William Blum Lecture, 87(9), 42-45 (2000). [pdf] 6. V. R. Subramanian, and R. E. White, “Solving Differential Equations with Maple,” Chem. Eng. Educ., 34(4), 328-336 (2000). [URL] 5. V. R. Subramanian, H. J. Ploehn, and R. E. White, “Shrinking Core Model for the Discharge of Metal Hydride Electrode,” J. Electrochem. Soc., 147(8), 2868-2873 (2000). [pdf] 4. G. G. Botte, V. R. Subramanian, and R. E. White, “Mathematical Modeling of Secondary Lithium Batteries,” Electrochim. Acta, (50th Anniversary Special Issue) 45 (15-16), 2595-2609 (2000). [pdf] 3. V. R. Subramanian and R. E. White, “A Semianalytical Method for Predicting Primary and Secondary Current Density Distributions: Linear and Nonlinear Boundary Conditions,” J. Electrochem. Soc., 147 (5), 1636-1644 (2000). [pdf]
2. V. R. Subramanian, B. S. Haran, and R. E. White,
“Series solutions for nonlinear boundary value problems using a symbolic
successive substitution method,” Comp. Chem. Engng., 23(3), 287-296 (1999).
[pdf]
1. V. S. Ramanan, M. Muthukumar, M. V. J. Reddy, and
B. Emmanuel, “Green's functions for the Laplace equation in a 3-layer medium,
Boundary Element Integrals and their application to Cathodic Protection,”
Eng. Anal. Bound. Elem., 23(9), 777-786 (1999). [pdf] Books and Book Chapters:3. P. Balbuena, and V. R. Subramanian, Editors, “Modern Aspects of Electrochemistry Vol 50 – Theory and Experiment in Electrocatalysis,” ISBN: 978-1-4419-5593-7, Springer, 2010. [Springer] 2. R. E. White, and V. R. Subramanian, “Computational Methods in Chemical Engineering with Maple,” Springer Verlag, ISBN: 978-3-642-04310-9, Springer, 2010. A textbook for Researchers and professionals. [Springer][Cover] 1. V. Boovaragavan, V. D. Diwakar, and V. R. Subramanian, book chapter, “Review of various simulation approaches for Lithium-ion battery models,” Recent Research Developments in Electrochemistry, submitted, January 2007. (Invited article, editor-Dr. Sheng S. Zhang). Other Publications:10. B. Suthar, V. Ramadesigan, P.W.C. Northrop, B. Gopaluni, S. Santhanagopalan, R.D. Braatz, and V.R. Subramanian, "Optimal control and state estimation of lithium-ion batteries using reformulated models," American Control Conference (ACC), 2013 , 5350-5355, 17-19 June 2013. [pdf] 9. R. N. Methekar, P. W. C. Northrop, K. Chen, R. D. Braatz, and V. R. Subramanian, ”Kinetic Monte Carlo simulation of surface heterogeneity in graphite anodes for lithium-ion batteries: Passive layer formation,“ American Control Conference (ACC), 1512-1517, June 29 - July 1 2011.[pdf] 8. V. R. Subramanian and R. D. Braatz, “Current Needs in Electrochemical Engineering Education,” The Electrochemical Society's Interface, 19 (2), (2010).[pdf] [Invited Article] 7. R. N. Methekar, V. Boovaragavan, M. Arabandi, V. Ramadesigan, V. R. Subramanian, F. Latinwo and R. D. Braatz, “Optimal Spatial Distribution of Microstructure in Porous Electrodes for Li-ion Batteries,” American Control Conference (ACC), 6600-6605, June 30 - July 2 2010.[pdf] 6. R. N. Methekar, V. Ramadesigan, R. D. Braatz, and V. R. Subramanian, “Optimum Charging Profile for Lithium-ion Batteries to Maximize Energy Storage and Utilization,” ECS Trans., 25 (35), 139-146 (2010). [pdf] 5. V. Ramadesigan, V. Boovaragavan, M. Arabandi, K. Chen, H. Tuskamoto, R. D. Braatz, and V. R. Subramanian, “Parameter Estimation and Capacity Fade Analysis of Lithium-Ion Batteries Using First-Principles-Based Efficient Reformulated Models,” ECS Trans., 19, 11-19 (2009). [pdf] 4. R. N. Methekar, V. Ramadesigan, V. Boovaragavan, V. R. Subramanian, and C. Rice-York, “Estimation of Optimum Operating Profile for PEMFC,” ECS Trans., 25 (1), 59-63 (2009). [pdf] 3. V. Ramadesigan, V. Boovaragavan, J. Carl Pirkle Jr., and V. R. Subramanian, “Efficient Reformulation of Solid-Phase Diffusion in Physics-Based Lithium-ion Battery Models,” ECS Trans., 16(29), 129-134 (2009). [pdf] 2. V. R. Subramanian, V. Boovaragavan, V. Ramadesigan, K. Chen, and R. D. Braatz, “Model Reformulation and Design of Lithium Ion Batteries,” Design for Energy and the Environment: Proceedings of the 7th International Conference on Foundations of Computer-Aided Process Design, edited by A.A. Linninger and M.M. El-Halwagi, Taylor and Francis, London, 987 (2009). [pdf]
1. V. R. Subramanian, and R. E. White, “Simulating
Series Reactions with Maple,” CACHE News, Spring 2002. [URL] Keynote Lectures:1. V. R. Subramanian, “Novel Semianalytical and Symbolic Solutions for Electrochemical Systems,” ANZIAM (Australia New Zealand Society for Industrial and Applied Mathematics) NSW regional meeting, Jervis Bay, NSW, Australia, December 9, 2006. Invited Presentations:28. Role of chemical engineering, robust algorithms and computing in improving the efficiency and reliability of electric transportation and renewable microgrids, Washington University's Net Impact Meeting, March 17, 2014. 27. Battery Tech: from flashlights to Teslas and beyond, Schlafly Bottleworks, Washington University's Science on Tap Series, January 29, 2014. 26. Mathematics in the driver’s seat, Institute for Pure and Applied Mathematics, NSF funded Workshop on batteries and fuel cells, November 6, 2013. 25. Modeling and simulation of lithium-ion batteries: from a systems engineering perspective, Department of Electrical and Systems Engineering, Washington University, April 22, 2013. 24. Mathematics in the driver’s seat, Department of mathematics, Washington University, April 1, 2013. 23. Model based design and control of lithium-ion batteries: from material synthesis in the lab to BMS design for the dashboard, Advanced Diagnostics, Automation & Control Laboratory, North Carolina State University, March 22, 2013. 22. Towards optimal design and use of lithium-ion batteries, Department of Chemical & Molecular Engineering, Case Western Reserve University, March 22, 2012. 21. Multiscale modeling and simulation of Lithium-ion batteries - A systems engineering perspective, Challenges in electrical energy storage, The first US-Taiwan workshop on materials and systems, NTUST (Taiwan), April 23-24, 2011. 20. Model reformulation, capacity fade analysis and optimization of battery models, Space Power Workshop, LA, CA, April 19, 2011. 19. Multiscale modeling and simulation of Lithium-ion batteries- A systems engineering perspective, Department of Chemical and Biological Engineering, Missouri University of Science and Technology, Rolla, MO, April 5, 2011. 18. Systems Engineering of Lithium Ion Batteries, ASME 2010 International Mechanical Engineering Congress & Exposition, Vancouver, Canada, November 17, 2010. 17. Systems Engineering of Lithium Ion Batteries, Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL, November 3, 2010. 16. Continuum and Multiscale Modeling of Performance Curves and Capacity Fade in Lithium-ion Batteries, Department of Chemical and Biomolecular Engineering, University of Notre Dame, IN, October 13, 2009. 15. Current needs in lithium-ion battery technology, Tennessee Valley Authority, Knoxville, TN, July 9, 2009, . 14. Modeling and Design of Lithium-ion Batteries, Foundations of Computer Aided Process Design , Breckenridge 2009, CO, June 11, 2009.
13. V. R. Subramanian, Writing proposals and obtaining external research funds – Personal Perspectives, Tennessee Tech University, Cookeville, TN, November 24, 2008. 12. V. R. Subramanian, Model Reformulation for Lithium-ion Batteries, Department of Chemical Engineering, University of Washington, Seattle, WA, September 29, 2008. 11. V. R. Subramanian, Addressing Simulation Challenges in Lithium-ion Battery Modeling, Navy Research Lab, Crane, IN, May 28, 2008. 10. V. R. Subramanian, Addressing Simulation Challenges in Lithium-ion Battery Modeling, Department of Chemical Engineering, State University of New York Buffalo, April 16, 2008. 9. V. R. Subramanian, Towards Real-time Simulation of Electrochemical Power Sources, American Chemical Society, South East Regional Meeting, Greenville, SC, October 26, 2007. 8. V. R. Subramanian, Modeling Electrochemical Power Sources in Hybrid Environments, School of Mathematics and Applied Statistics, University of Wollongong, WOLLONGONG NSW, Australia, December 15, 2006. (Invited by Dr. Mark Nelson). 7. V. R. Subramanian, Novel Symbolic and Semianalytical Solutions for Electrochemical Systems, Department of Chemical Engineering, Vanderbilt University, Nashville, October 2, 2006. (Invited by Dr. Clare McCabe). 6. V. R. Subramanian, Novel Semianalytical and Symbolic Solutions for Electrochemical Systems, Oak Ridge National Laboratory, Oak Ridge, April 18, 2006. (Invited by Dr. Leonard Gray, Mathematics Sciences Section, Oakridge National Laboratory). 5. V. R. Subramanian, Novel Semianalytical and Symbolic Solutions for Electrochemical Systems, Central Electrochemical Research Institute, CECRI, Karaikudi, India, June 9, 2006. (Invited by Dr. Bosco Emmanuel). 4. V. R. Subramanian, Modeling Electrochemical Power Sources in Hybrid Environments, Dave C. Swalm School of Chemical Engineering, Mississippi State University, Mississippi State, November 8, 2005. (Invited by Dr. Todd French). 3. Mathematical Modeling of Lithium-ion Batteries - Governing Equations and Numerical Solution, National Reconnaissance Office, Rockville, MD March 1-3, 2004. (Invited Workshop conducted by V. R. Subramanian). 2. V. R. Subramanian, Simulation and Analysis of Electrochemical Power Sources, Department of Chemical Engineering, University of Tennessee, Knoxville, January 13, 2004. (Invited by Dr. Brian Edwards). 1. V. R. Subramanian, Simulation and Analysis of Electrochemical Systems, Central Electrochemical Research Institute, Karaikudi, India, June 18, 2003 (invited by Dr. N. G. Renganathan). |